Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Microb Pathog ; 178: 106064, 2023 May.
Article in English | MEDLINE | ID: mdl-36898591

ABSTRACT

Persistent antibiotic use results in the rise of antimicrobial resistance with limited or no choice for multidrug-resistant (MDR) and extensively drug resistant (XDR) bacteria. This necessitates a need for alternative therapy to effectively combat clinical pathogens that are resistant to last resort antibiotics. The study investigates hospital sewage as a potential source of bacteriophages to control resistant bacterial pathogens. Eighty-one samples were screened for phages against selected clinical pathogens. Totally, 10 phages were isolated against A. baumannii, 5 phages against K. pneumoniae, and 16 phages were obtained against P. aeruginosa. The novel phages were observed to be strain-specific with complete bacterial growth inhibition of up to 6 h as monotherapy without antibiotics. Phage plus colistin combinations reduced the minimum-biofilm eradication concentration of colistin up to 16 folds. Notably, a cocktail of phages exhibited maximum efficacy with complete killing at 0.5-1 µg/ml colistin concentrations. Thus, phages specific to clinical strains have a higher edge in treating nosocomial pathogens with their proven anti-biofilm efficacy. In addition, analysis of phage genomes revealed close phylogenetic relations with phages reported from Europe, China, and other neighbouring countries. This study serves as a reference and can be extended to other antibiotics and phage types to assess optimum synergistic combinations to combat various drug resistant pathogens in the ongoing AMR crisis.


Subject(s)
Bacteriophages , Phage Therapy , Colistin/pharmacology , Phylogeny , Anti-Bacterial Agents/pharmacology , Bacteriophages/genetics , Bacteria
2.
J Med Microbiol ; 71(1)2022 Jan.
Article in English | MEDLINE | ID: mdl-35037615

ABSTRACT

Introduction. Bacterial dysentery is one of the greatest causes of morbidity and mortality worldwide. Campylobacter spp. and diarrhoeagenic Escherichia coli (DEC) are recognised as the most common causes of bacterial enteritis in developing countries including India.Hypothesis/Gap statement. Rapid and accurate identification of dysentery causing organisms using molecular methods is essential for better disease management, epidemiology and outbreak investigations.Aim. In view of the limited information available on the dysentery causing agents like Campylobacter spp., enterohemorrhagic E. coli (EHEC)/enteropathogenic E. coli (EPEC) and enteroinvasive E. coli (EIEC)/Shigella in India, this study was undertaken to investigate the presence of these pathogens in human and poultry stool samples by molecular methods.Methodology. In total, 400 human stool samples and 128 poultry samples were studied. Microaerophilic culture along with real-time multiplex PCR with the targets specific to the genus Campylobacter, Campylobacter jejuni, Campylobacter coli, EHEC, EPEC and EIEC/Shigella was performed. Further species confirmation was done using MALDI-TOF MS.Results. On microaerophilic culture, C. coli was isolated in one human sample and two C. jejuni and one C. fetus in poultry samples. On PCR analysis, among human stool samples, typical EPEC (42%) was predominantly seen followed by Campylobacter spp. (19%) and EIEC/Shigella (10%). In contrast, Campylobacter spp. (41%) was predominant in poultry samples, followed by typical EPEC (26%) and EIEC/Shigella (9%). Poly-infections with Campylobacter spp. and DEC were also observed among both sources.Conclusion. The present study documented the increased prevalence of Campylobacter spp. in humans compared with the results of previous studies from India. Typical EPEC was found to be predominant in children less than 5 years of age in this study. The high prevalence of coinfections in the current study indicates that a multiple aetiology of diarrhoea is common in our settings.


Subject(s)
Campylobacter Infections , Campylobacter , Dysentery , Enterohemorrhagic Escherichia coli , Escherichia coli Infections , Campylobacter/genetics , Campylobacter/pathogenicity , Campylobacter Infections/epidemiology , Child, Preschool , Diarrhea/epidemiology , Diarrhea/microbiology , Dysentery/epidemiology , Dysentery/microbiology , Enterohemorrhagic Escherichia coli/genetics , Enterohemorrhagic Escherichia coli/pathogenicity , Escherichia coli Infections/epidemiology , Feces , Humans , India , Multiplex Polymerase Chain Reaction , Prevalence , Real-Time Polymerase Chain Reaction , Shigella/genetics
3.
PLoS One ; 16(12): e0261435, 2021.
Article in English | MEDLINE | ID: mdl-34910778

ABSTRACT

Diphtheria is caused by a toxigenic bacterium Corynebacterium diphtheria which is being an emerging pathogen in India. Since diphtheria morbidity and mortality continues to be high in the country, the present study aimed to study the molecular epidemiology of C. diphtheriae strains from India. A total of 441 diphtheria suspected specimens collected as part of the surveillance programme between 2015 and 2020 were studied. All the isolates were confirmed as C. diphtheriae with standard biochemical tests, ELEK's test, and real-time PCR. Antimicrobial susceptibility testing for the subset of isolates showed intermediate susceptibility to penicillin and complete susceptible to erythromycin and cefotaxime. Isolates were characterized using multi locus sequence typing method. MLST analysis for the 216 C. diphtheriae isolates revealed major diversity among the sequence types. A total of 34 STs were assigned with majority of the isolates belonged to ST466 (30%). The second most common ST identified was ST405 that was present in 14% of the isolates. The international clone ST50 was also seen. The identified STs were grouped into 8 different clonal complexes (CC). The majority belongs to CC5 followed by CC466, CC574 and CC209, however a single non-toxigenic strain belongs to CC42. This epidemiological analysis revealed the emergence of novel STs and the clones with better dissemination properties. This study has also provided information on the circulating strains of C. diphtheriae among the different regions of India. The molecular data generated through surveillance system can be utilized for further actions in concern.


Subject(s)
Anti-Bacterial Agents/pharmacology , Corynebacterium diphtheriae/classification , Corynebacterium diphtheriae/drug effects , Epidemiological Monitoring , Cefotaxime/pharmacology , Corynebacterium diphtheriae/genetics , Corynebacterium diphtheriae/isolation & purification , Diphtheria/epidemiology , Erythromycin/pharmacology , Humans , India/epidemiology , Microbial Sensitivity Tests , Molecular Epidemiology , Multilocus Sequence Typing , Penicillins/pharmacology
4.
Access Microbiol ; 3(2): 000189, 2021 Feb.
Article in English | MEDLINE | ID: mdl-34151144

ABSTRACT

Azithromycin is increasingly being used for the treatment of shigellosis despite a lack of interpretative guidelines and with limited clinical evidence. The present study determined azithromycin susceptibility and correlated this with macrolide-resistance genes in Shigella spp. isolated from stool specimens in Vellore, India. The susceptibility of 332 Shigella isolates to azithromycin was determined using the disc diffusion method. Of these, 31 isolates were found to be azithromycin resistant. The azithromycin minimum inhibitory concentration (MIC) was determined using the broth microdilution method. In addition, isolates were screened for mphA and ermB genes using conventional PCR. Furthermore, an isolate that was positive for resistance genes was subjected to complete genome analysis, and was analysed for mobile genetic elements. The azithromycin MIC for the 31 resistant Shigella isolates ranged between 2 and 16 mg l-1. PCR results showed that a single isolate of Shigella sonnei carried a mphA gene. Complete genome analysis revealed integration of an IncFII plasmid into the chromosome of S. sonnei , which was also found to carry the following resistance genes: sul1, bla DHA1, qnrB4, mphA, tetR. Mutations in the quinolone-resistance-determining region (QRDR) were also observed. Additionally, prophages, insertion sequences and integrons were identified. The novel finding of IncFII plasmid integration into the chromosome of S. sonnei highlights the potential risk of Shigella spp. becoming resistance to azithromycin in the future. These suggests that it is imperative to monitor Shigella susceptibility and to study the resistance mechanism of Shigella to azithromycin considering the limited treatment choices for shigellosis.

5.
Front Microbiol ; 11: 591679, 2020.
Article in English | MEDLINE | ID: mdl-33381089

ABSTRACT

Klebsiella pneumoniae is one of the leading causes of nosocomial infections. Carbapenem-resistant K. pneumoniae are on the rise globally. The biofilm forming ability of K. pneumoniae further complicates patient management. There is still a knowledge gap on the association of biofilm formation with patient outcome and carbapenem susceptibility, which is investigated in present study. K. pneumoniae isolates from patients admitted in critical care units with catheters and ventilators were included. K. pneumoniae (n = 72) were subjected to 96-well plate biofilm formation assay followed by MBEC assay for subset of strong biofilm formers. Whole genome sequencing and a core genome phylogenetic analysis in comparison with global isolates were performed. Phenotypic analyses showed a positive correlation between biofilm formation and carbapenem resistance. Planktonic cells observed to be susceptible in vitro exhibited higher MICs in biofilm structure, hence MICs cannot be extrapolated for treatment. The biofilm forming ability had a significant association with morbidity/mortality. Infections by stronger biofilm forming pathogens significantly (p < 0.05) resulted in fewer "average days alive" for the patient (3.33 days) in comparison to those negative for biofilms (11.33 days). Phylogenetic analysis including global isolates revealed clear association of sequence types with genes for biofilm formation and carbapenem resistance. Known hypervirulent clone-ST23 with wcaG, magA, rmpA, rmpA2, and wzc with lack of mutation for hyper-capsulation might be poor biofilm formers. ST15, ST16, ST307, and ST258 (reported global high-risk clones) were wcaJ negative indicating the high potential of biofilm forming capacity. Genes wabG and treC for CPS, bcsA and pgaC for adhesins, luxS for quorum sensing were common in all clades in addition to genes for aerobactin (iutA), allantoin (allS), type I and III fimbriae (fimA, fimH, and mrkD) and pili (pilQ and ecpA). This study is the first of its kind to compare genetic features of antimicrobial resistance with a spectrum covering most of the genetic factors for K. pneumoniae biofilm. These results highlight the importance of biofilm screening to effectively manage nosocomial infections by K. pneumoniae. Further, data obtained on epidemiology and associations of biofilm and resistance genetic factors will serve to enhance our understanding on biofilm mechanisms in K. pneumoniae.

6.
Access Microbiol ; 2(4): acmi000103, 2020.
Article in English | MEDLINE | ID: mdl-33005867

ABSTRACT

Recent findings demonstrate the origin of the plasmid-mediated colistin resistance gene mcr-3 from aeromonads. The present study aimed to screen for plasmid-mediated colistin resistance among 30 clinical multidrug-resistant (MDR) Aeromonas spp. PCR was used to screen for the presence of mcr-1, mcr-2, mcr-3 and mcr-4, which revealed mcr-3 in a colistin-susceptible isolate (FC951). All other isolates were negative for mcr. Sequencing of FC951 revealed that the mcr-3 (mcr-3.30) identified was different from previously reported variants and had 95.62 and 95.28 % nucleotide similarity with mcr-3.3 and mcr-3.10. Hybrid assembly using IonTorrent and MinION reads revealed structural genetic information for mcr-3.30 with an insertion of ISAs18 within the gene. Due to this, mcr-3.30 was non-expressive, which makes FC951 susceptible to colistin. Further, in silico sequence and protein structural analysis confirmed the new variant. To the best of our knowledge, this is the first report on a novel mcr-3 variant from India. The significant role of mcr-like genes in different Aeromonas species remains unknown and requires additional investigation to obtains insights into the mechanism of colistin resistance.

7.
mSphere ; 5(5)2020 10 07.
Article in English | MEDLINE | ID: mdl-33028681

ABSTRACT

Shigella is the second leading cause of bacterial diarrhea worldwide. Recently, Shigella sonnei seems to be replacing Shigella flexneri in low- and middle-income countries undergoing economic development. Despite this, studies focusing on these species at the genomic level remain largely unexplored. Here, we compared the genome sequences of S. flexneri and S. sonnei isolates from India with the publicly available genomes of global strains. Our analysis provides evidence for the long-term persistence of all phylogenetic groups (PGs) of S. flexneri and the recent dominance of the ciprofloxacin-resistant S. sonnei lineage in India. Within S. flexneri PGs, the majority of the study isolates belonged to PG3 within the predominance of serotype 2. For S. sonnei, the current pandemic involves globally distributed multidrug-resistant (MDR) clones that belong to Central Asia lineage III. The presence of such epidemiologically dominant lineages in association with stable antimicrobial resistance (AMR) determinants results in successful survival in the community.IMPORTANCEShigella is the second leading cause of bacterial diarrhea worldwide. This has been categorized as a priority pathogen among enteric bacteria by the Global Antimicrobial Resistance Surveillance System (GLASS) of the World Health Organization (WHO). Recently, S. sonnei seems to be replacing S. flexneri in low- and middle-income countries undergoing economic development. Antimicrobial resistance in S. flexneri and S. sonnei is a growing international concern, specifically with the international dominance of the multidrug-resistant (MDR) lineage. Genomic studies focusing on S. flexneri and S. sonnei in India remain largely unexplored. This study provides information on the introduction and expansion of drug-resistant Shigella strains in India for the first time by comparing the genome sequences of S. flexneri and S. sonnei isolates from India with the publicly available genomes of global strains. The study discusses the key differences between the two dominant species of Shigella at the genomic level to understand the evolutionary trends and genome dynamics of emerging and existing resistance clones. The present work demonstrates evidence for the long-term persistence of all PGs of S. flexneri and the recent dominance of a ciprofloxacin-resistant S. sonnei lineage in India.


Subject(s)
Anti-Bacterial Agents/pharmacology , Ciprofloxacin/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Evolution, Molecular , Phylogeny , Shigella sonnei/drug effects , Dysentery, Bacillary/epidemiology , Dysentery, Bacillary/microbiology , Feces/microbiology , Genome, Bacterial , Humans , India/epidemiology , Serogroup , Shigella flexneri/genetics , Shigella sonnei/classification , Whole Genome Sequencing
8.
Gut Pathog ; 11: 55, 2019.
Article in English | MEDLINE | ID: mdl-31709015

ABSTRACT

Shigella is ranked as the second leading cause of diarrheal disease worldwide. Though infection occurs in people of all ages, most of the disease burden constitutes among the children less than 5 years in low and middle income countries. Recent increasing incidence of drug resistant strains make this as a priority pathogen under the antimicrobial resistance surveillance by WHO. Despite this, only limited genomic studies on drug resistant Shigella exists. Here we report the first complete genome of clinical S. flexneri serotype 2a and S. sonnei strains using a hybrid approach of both long-read MinION (Oxford Nanopore Technologies) and short-read Ion Torrent 400 bp sequencing platforms. The utilization of this novel approach in the present study helped to identify the complete plasmid sequence of pSS1653 with structural genetic information of AMR genes such as sulII, tetA, tetR, aph(6)-Id and aph(3'')-Ib. Identification of AMR genes in mobile elements in this human-restricted enteric pathogen is a potential threat for dissemination to other gut pathogens. The information on Shigella at genome level could help us to understand the genome dynamics of existing and emerging resistant clones.

9.
Pathog Glob Health ; 113(4): 173-179, 2019 06.
Article in English | MEDLINE | ID: mdl-31221039

ABSTRACT

Shigella is the major cause of bacillary dysentery worldwide, especially in developing countries. There are several virulence factors essential for the organism to be virulent which are generally present in the virulence plasmid and on chromosomal pathogenicity islands. The present study was undertaken to determine the virulence gene profile of Shigella spp isolated from a clinical specimen and to study their significant association with common clinical symptoms and antimicrobial resistance. Sixty Shigella whole genome sequences, including 22 S. flexneri, 14 S. sonnei, 17 S. boydii and 7 S. dysenteriae were analyzed for the presence of virulence genes. The gene found predominantly in this study were ipaH (90%) followed by sigA (83%), and lpfA (78%) respectively. The virulence genes were significantly higher in S. flexneri, particularly in serotype 2 compared to S. sonnei. Interestingly, a significant association was observed between sigA gene and fever whereas sepA and sigA were found to be associated with diarrhea. Among the studied Shigella isolates, the presence of virulence genes was found higher in isolates resistant to more than three antibiotic classes. The present work revealed the varying incidence of virulence determinants among different Shigella serogroups and shows their contribution to disease severity.


Subject(s)
Dysentery, Bacillary/microbiology , Dysentery, Bacillary/pathology , Feces/microbiology , Genes, Bacterial , Genotype , Shigella/genetics , Virulence Factors/genetics , Dysentery, Bacillary/epidemiology , Incidence , India/epidemiology , Serogroup , Shigella/classification , Shigella/isolation & purification , Shigella/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL
...